Moneyball and the lesson for Privacy

If you haven’t read the book, Moneyball: the Art of Winning an Unfair Game, or seen the movie staring Brad Pitt and Jonah Hill, I highly encourage you to see them out. I tend to be a “privacy” subject matter expert, but one of the most important aspects of that expertise is the ability to consume diverse content from other expects and apply it to the world of privacy. Whether its behavioral economics (from sources like the Freakonomics and Hidden Brain podcasts), how people learn (from YouTube channel Vertasium), or use of statistics and probability in baseball (i.e. Moneyball).

                I see a huge parallel between Baseball management in the pre-2000 era and the privacy management today. For a hundred plus years, Baseball team management was governed by intuition. Managers and scouts thought they knew what made up a good team. Baseball statistics were published for decades, but wasn’t used in a way that really optimized team performance. The concept of Sabermetrics (the empircal analysis of in game acitivity) began in the 1960s, grew in 1970s, but then transformed the business of Baseball in the 2000s (as chronicled in the book and movie; also see this podcast). Sabremetrics took the “intuition” out of Baseball and turned it into a science, one based on statistics and probability. Science can’t tell you a particular batter will hit a home run against a particular pitcher, but probability can show that you, if you make the same choices, game after game, you’re going to end up with result in a certain range.

                Similar transformations have hit other industries. I believe, the privacy profession is in line for this sort of refactoring. Attempts have been made for decades to create KPI (Key Performance Indicators) for privacy. One of my earliest introductions was a talk by Tracy Ann Kosa at an IAPP conference about a decade ago.  But most privacy program KPIs, in my opinion, still follow the Baseball analogy. Scouts were looking at player stats, but ultimately they were looking at the wrong statistics to determine game outcome. As Jonah Hill says in the movie, “Your goal is not to buy players, its to buy wins.” The privacy profession has, for its short life, relied mostly on heuristics, shortcuts that we intuitively sense, improve desired outcomes. Those shortcuts (such as GAPP, FIPPs, Principles, etc.) have become goals themselves and the metrics tied to those intermediary goals. But, like Baseball, the goal is not the player, the goal is the game. Analogously, a goal in privacy is not transparency, but rather whether a person has the ability to make decisions about things that affect them (with full knowledge and without being overwhelmed). Transparency is a sideshow. Transparency is worthless if it overwhelms or doesn’t support meaningful decision making.

                The point of this post is that metrics are important, rigorously important. Privacy needs to step out of the dark ages of intuition, superstition, and old wives tales.

The author is principal at Enterprivacy Consulting Group, a boutique consulting firm focused on privacy engineering, privacy by design and the NIST Privacy Framework.

Diagramming Data Transfers

International data transfer is probably one of my least favorite privacy exercises. Why? Probably my main dislike deals with the fact that its not really about privacy, but often more about protectionism. That being said, data transfers are a hot hot topic these days, both in Europe and in countries like China and Brazil. It wasn’t until recently that I realized if you look at GDPR from far away, you see there are really four key chapters

  • Chapter II – Principles
  • Chapter III – Rights of the Data Subject
  • Chapter IV – Controllers and Processors
  • Chapter V – Transfers

Fundamentally, most people, myself included, equate GDPR to principles of data processing, rights afforded the data subject and obligations of controllers and processers, but right up there with those key concepts is a whole chapter on international data transfers. At least in the minds of the GDPR authors, transfers are clearly not an afterthought but one of the four major components of the regulation.

With data transfers clearly an important element of GDPR, its important that the analysis of transfers be done with some care. I, for one, am a very visual person. I can analogize concepts visually much easier than verbally. Astute readers may have noticed the diagrams accompany my previous post on data transfer regarding the recent draft guidelines put out by the European Data Protection Board. In working through data transfer scenarios, I’ve found it extremely helpful to illustrate or diagram them.

Disambiguating “transfers” and “transmission” of data

Before diving into how to diagram data transfers, it’s important to distinguish the terms transfer and transmit. Transmission of data occurs when data goes from one place to another. If I send you an email with an attachment, I am transmitting data to you. That data is transmitted over multiple servers, through different service providers and maybe through different geographies. A transfer, however, under the GDPR is a legal chain by which a controller or processer transfers data to another controller or processor. In other words the transmission ≠ the transfer.

Perhaps an example would help. I use Dreamhost to host my website. On my website, I host a file (say a pretty infographic). You go to my website and download the file. The file is transmitted from Dreamhost (wherever their servers are) to you (wherever you are) However, there is not a legal transfer from Dreamhost to you. The transfer was from me to you. I may never have even had the file in my possession. Let’s illustrate that.

Simple transfer/transmission diagram

As you can see, I’ve used dotted lines to illustrate the transmission of data, the 0’s and 1’s flying over the internet from DreamHost to You. But the transfer, the metaphysical or conceptual transfer, from me to you, is illustrated with a solid line. Let’s look at an EU example.

European Union data transfers

EU data transfer diagram

Here, ChairFans, GmbH, a German company, sends a file to Star Analytics, Inc., in the US, to analyze. In this case the transmission is parallel to the transfer. ChairFans is transmitting data to Star Analytics and they are also transferring that data. Remember, the transmission refers to the physical bits flying across the Atlantic Ocean and the transfer refers to the act of one entity giving the other entity the data. If you’re still struggling, you can think of it this way. If a hacker broke into ChairFans and stole the data, the data would still be transmitted over the internet across the Atlantic Ocean, but ChairFans didn’t “transfer” data to the hacker. It was not a deliberative, intentional act of making the data available to the hacker.

Do we need a GDPR Chapter V transfer tool for this transfer? If there was

Diagramming

To diagram data transfers, I’m using diagrams.net, a free (and privacy friendly) tool to create diagrams. I’ll provide the file for all these diagrams at the end of this blog. I’ve also included a template for the shapes I’m using, which you can use to create your own data transfer diagrams. For the following example, I’m first going to illustrate the Use Case for supplementary measures in the EDPB Recommendations.

EDPB Recommendation

Use Case 1: Data storage for backup and other purposes that do not require access to data in the clear

A data exporter uses a hosting service provider in a third country to store personal data, e.g., for backup purposes. Notice, I’ve now added the labels, Exporter and Importer to the entities.

Illustration 3

Use Case 2: Transfer or pseudonymised Data

A data exporter first pseudonymises data it holds, and then transfers it to a third country for analysis, e.g., for purposes of research. This really isn’t distinguished from the previous example. I’ve added a gear icon to indicate the pseudonymization.

Illustration 4

Use Case 3: Encrypted data merely transiting third countries

A data exporter wishes to transfer data to a destination recognised as offering adequate protection in accordance with Article 45 GDPR. The data is routed via a third country.

Illustration 5

Use Case 4: Protected recipient

A data exporter transfers personal data to a data importer in a third country specifically protected by that country’s law, e.g., for the purpose to jointly provide medical treatment for a patient, or legal services to a client. No different than illustration 3

Use Case 5: Split or multi-party processing

The data exporter wishes personal data to be processed jointly by two or more independent processors located in different jurisdictions without disclosing the content of the data to them. Prior to transmission, it splits the data in such a way that no part an individual processor receives suffices to reconstruct the personal data in whole or in part. The data exporter receives the result of the processing from each of the processors independently, and merges the pieces received to arrive at the final result which may constitute personal or aggregated data.

Illustration 6

Use Case 6: Transfer to cloud service providers or other processor which require access to data in the clear

A data exporter uses a cloud service provider or other processor to have personal data processed according to its instructions in a third country.

Illustration 7

Use Case 7: Remote access to data for business purposes

A data exporter makes personal data available to entities in a third country to be used for shared business purposes. A typical constellation may consist of a controller or processor established on the territory of a Member State transferring personal data to a controller or processor in a third country belonging to the same group of undertakings, or group of enterprises engaged in a joint economic activity. The data importer may, for example, use the data it receives to provide personnel services for the data exporter for which it needs human resources data, or to communicate with customers of the data exporter who live in the European Union by phone or email. Here I’ve added an IT system to indicate that the Common Enterprise has remote access to that IT system.

Illustration 8

EDPB Guideline on Article 3 and Chapter V

Next up I’ll tackle the examples from the draft EDPB Guidelines on the Interplay Article 3 and Chapter V.

Example 1

Maria, living in Italy, inserts her personal data by filling a form on an online clothing website in order to complete her order and receive the dress she bought online at her residence in Rome. The online clothing website is operated by a company established in Singapore with no presence in the EU. In this case, the data subject (Maria) passes her personal data to the Singaporean company, but this does not constitute a transfer of personal data since the data are not passed by an exporter (controller or processor), since they are passed directly and on her own initiative by the data subject herself. Thus, Chapter V does not apply to this case. Nevertheless, the Singaporean company will need to check whether its processing operations are subject to the GDPR pursuant to Article 3(2).12

Illustration 10

Example 2

Company X established in Austria, acting as controller, provides personal data of its employees or customers to a company Z established in Chile, which processes these data as processor on behalf of X. In this case, data are provided from a controller which, as regards the processing in question, is subject to the GDPR, to a processor in a third country. Hence, the provision of data will be considered as a transfer of personal data to a third country and therefore Chapter V of the GDPR applies. Note, I’ve added the labels C and P to indicate Processor and Controller

Illustration 9

Example 3: Processor in the EU sends data back to its controller in a third country

XYZ Inc., a controller without an EU establishment, sends personal data of its employees/customers, all of them non-EU residents, to the processor ABC Ltd. for processing in the EU, on behalf of XYZ. ABC re-transmits the data to XYZ. The processing performed by ABC, the processor, is covered by the GDPR for processor specific obligations pursuant to Article 3(1), since ABC is established in the EU. Since XYZ is a controller in a third country, the disclosure of data from ABC to XYZ is regarded as a transfer of personal data and therefore Chapter V applies.

Illustration 10

Example 4: Processor in the EU sends data to a sub-processor in a third country

Company A established in Germany, acting as controller, has engaged B, a French company, as a processor on its behalf. B wishes to further delegate a part of the processing activities that it is carrying out on behalf of A to sub-processor C, a company established in India, and hence to send the data for this purpose to C. The processing performed by both A and its processor B is carried out in the context
of their establishments in the EU and is therefore subject to the GDPR pursuant to its Article 3(1), while the processing by C is carried out in a third country. Hence, the passing of data from processor B to sub-processor C is a transfer to a third country, and Chapter V of the GDPR applies.

Illustration 11

Example 5: Employee of a controller in the EU travels to a third country on a business trip

George, employee of A, a company based in Poland, travels to India for a meeting. During his stay in India, George turns on his computer and accesses remotely personal data on his company’s databases to finish a memo. This remote access of personal data from a third country, does not qualify as a transfer of personal data, since George is not another controller, but an employee, and thus an integral part of the controller (company A). Therefore, the disclosure is carried out within the same controller (A). The processing, including the remote access and the processing activities carried out by George after the access, are performed by the Polish company, i.e. a controller established in the Union subject to Article 3(1) of the GDPR.

Illustration 12

Example 6: A subsidiary (controller) in the EU shares data with its parent company (processor) in a
third country

The Irish Company A, which is a subsidiary of the U.S. parent Company B, discloses personal data of its employees to Company B to be stored in a centralized HR database by the parent company in the U.S. In this case the Irish Company A processes (and discloses) the data in its capacity of employer and hence as a controller, while the parent company is a processor. Company A is subject to the GDPR pursuant to Article 3(1) for this processing and Company B is situated in a third country. The disclosure therefore qualifies as a transfer to a third country within the meaning of Chapter V of the GDPR.

Illustration 13

Example 7: Processor in the EU sends data back to its controller in a third country

Company A, a controller without an EU establishment, offers goods and services to the EU market. The French company B, is processing personal data on behalf of company A. B re-transmits the data to A. The processing performed by the processor B is covered by the GDPR for processor specific obligations pursuant to Article 3(1), since it takes place in the context of the activities of its establishment in the EU. The processing performed by A is also covered by the GDPR, since Article 3(2) applies to A. However, since A is in a third country, the disclosure of data from B to A is regarded as a transfer to a third country and therefore Chapter V applies.

Illustration 14

My comments to the EDPB

Subsequent to the draft guidelines above, I made a comment to the EDPB on two scenarios they should cover. Those scenarios are detailed below.

A data subject contracts with X, GmbH (in Germany) which is a European Union based subsidiary of X, Inc (in the United States). However, the data subject never actually supplies personal data to X, GmbH as the data subject directly transmit data to X, Inc. in the United States. This is a Chapter V transfer of data requiring a transfer tool. X, GmbH and X, Inc. use standard contractual clauses in place governing the transfer of data. X, GmbH is the exporter and X, Inc. is the importer. 

Illustration 15

ABC, GmbH (in Germany) instructs employees to use a service provided by X, Inc., in the United States. Employees’ behavior is tracked via the service provided by X, Inc, thus X, Inc. is subject to GDPR for the data under Article 3.2(b). Because ABC, GmbH is “mak[ing] personal data, subject to this processing, available to…” X, Inc. via instructions to its employees, there is a transfer of data under Article V. ABC, GmbH and X, Inc. execute the standard contractual clauses with ABC, GmbH as the exporter and X, Inc. as the importer.

Illustration 16

I posed this scenario on LinkedIn

Company X, GmbH (DE) host data on an Australian data server. They contract with Company Y, Inc. in the United States to process data. Company Y’s employee working remotely in Australia, accesses the data on the data server. X, GmbH and Y, Inc. execute Standard Contractual Clauses to govern the transfer. There is a legal transfer of data because X, who has putative control over the data in Australia, gave access to Y, who has putative control over it’s employee in Australia. This despite the fact that the data never left Australia.

Illustration 17

If you want to explore these scenarios and make some of you’re own, download this file (be sure to right click and save the file to your desktop). Then go to https://diagrams.net then open the file from there.

Comment on Guidelines 05/2021 on the Interplay between the application of Article 3 and the provisions on international transfer as per Chapter V

Below are my comments on recent EDPB Guidelines which I’m submitting as part of their public consultation.

The guidelines need to provide an example which is a very common scenario:

A consumer data subject (located in the EU) registers with an online service. The service is being offered by a company in a third country, thus placing the company under the territorial scope of GPDR via Art. 3.2(a). However, when registering for the service, the data subject enters into an agreement with a subsidiary of the company located in the EU. For avoidance of doubt, the subsidiary in the EU, never possesses personal data of the data subject. It appears, in this scenario, that there is a legal “transfer” from the subsidiary in the EU to the parent company in the third country.

Example I

Illustration of data transmission and a legal data transfer

In the example illustrated above, a data subject contracts with X, GmbH (in Germany) which is a European Union based subsidiary of X, Inc (in the United States). However, the data subject never actually supplies personal data to X, GmbH as the data subject directly transmit data to X, Inc. in the United States. This is a Chapter V transfer of data requiring a transfer tool. X, GmbH and X, Inc. use standard contractual clauses in place governing the transfer of data. X, GmbH is the exporter and X, Inc. is the importer. 

A similar scenario exists when a business in the EU directs its employees to use an app (such as for Human Resource purposes) which is provided by a vendor in a third country which monitors the behavior of the employees (such as job time tracking), thus subjecting the vendor to GDPR under Art 3.2(b). Even though the employer never holds the data, this still appears to be a transfer under the guidance (“otherwise makes personal data available”). A clarifying example in the guidelines be helpful.

Example II

No alt text provided for this image
Illustration of a data transmission and legal data transfer

ABC, GmbH (in Germany) instructs employees to use a service provided by X, Inc., in the United States. Employees’ behavior is tracked via the service provided by X, Inc, thus X, Inc. is subject to GDPR for the data under Article 3.2(b). Because ABC, GmbH is “mak[ing] personal data, subject to this processing, available to…” X, Inc. via instructions to its employees, there is a transfer of data under Article V. ABC, GmbH and X, Inc. execute the standard contractual clauses with ABC, GmbH as the exporter and X, Inc. as the importer.

Respectfully submitted,

R. Jason Cronk

CHALLENGE:90 Trails in 100 Days

Challenge: 90 Trails in 100 Days

Sunrise over Myakka River State Park

In the fall of 2020, I went on a wonderful, adventurous, hike down from the rim of the Grand Canyon into Phantom Ranch on the river. The trip was arduous and the climb out was tough given my hailing from the vertically challenged state of Florida. Prior to this undertaking, I had begun training, in Florida, including perhaps Florida’s most vertical trail, the Torreya Challenge in Torreya State Park. After this adventure and the two months of training leading up to it, I became a bit of a couch potato in December and January. About the middle of January, I decided to do something about that. Seeing all the wonderful trails in my area, I set myself a challenge, to hike or bike 90 different trails in 100 days. I gave myself a hundred days to account for weather, work or other impediments to doing a trail each day.  

Now you may be asking, what this has to do with privacy. The short answer is not much, but there is always an angle. In using AllTrails, the trail mapping application, I discovered a nifty way to stalk people. See my previous blog post for more.

In February, thanks to Publix Supermarkets, I procured a large amount of trail mix. By the end, despite adding some more in March and April, I was down to one container.


My typical kit consistent of day pack with water reservoir, bear bell, bear mace, Chapstick, headphones to listen to Privacy podcasts, snacks (not pictured trail mix), and trail maps. Also not pictured are optional sunscreen and insect repellent.

Off I set on January 30th. The task seemed simple but, as with many things, implementation was more fraught than at first imagined. I tried to do longer trails or those  farther away when I had more time (like weekends) or during nice weather. One early trail, Pond Loop, at Okeeheepkee Prairie County Park, I completed on a rainy afternoon was only 0.5 miles. I decided after that to only include trails over 1 mile long. This lead me to a few times combining short trails into one “trail” or stretching a trail to it’s extreme (exploring every nook and cranny) to try to get that mile in. Trying to define a “trail” also led to some creative interpretations. Not all trails are simply laid out in the platonic idealized state. Some are based on forest service roads, some intersect and loop and figure 8. Some are out and back, retracing your steps. I had to break some long trails, like the 30+ miles of the St. Marks trail into more manageable pieces of about 16 mile chunks (8 out and 8 back). Some of my trips weren’t trails at all, but I counted them, like when I walked 6 miles home after dropping off a truck at the rental car company. I learned about new trails, which weren’t easily found, like the Capital to Coast trail still under construction, which when fully complete with be 120 miles of biking or shared use paths from Tallahassee to the Emerald coast. 

It was perhaps the best time to be out hiking and biking in Florida. Spring weather meant it wasn’t too hot, the parks were green and flowers were in full bloom. I saw so many animals, many that your rarely see as a weekend warrior.  In addition to the usual squirrels and lizards, I saw a bobcat, a family of boar, water moccasins and other snakes, a mole,  a red pileated woodpecker, a gopher tortoise, giant mosquitoes, ticks, spiders, and many more. I did not, however, see a bear. Not to say they weren’t there, but ever since I encountered a bear last year, I’ve been hiking with a bear bell and bear mace, so they’ve thankfully kept their distance. 

What lurks beneath? Creature from the black lagoon? Manatee? Large alligator? Something was moving fast and leaving a wake under the Crooked River in Tate’s Hell State Forest.

As a capstone to my challenge, I returned to Torreya State Park to take on the Torreya Challenge. It was a wonderous exhausting 4 hours which left me with a terrible head ache, but I made it. 90 different trails. 98 days in the making. 478 miles covered. Challenge complete. Level UP! 

More Galleries

Animals and Insects
Flora and Fungi
Doll's Head Trail
IMG_2133
Georgia
Econfina State Park
Emerald Coast
Torreya State Park - Torreya Trail and the Torreya Challenge Trail
Panoramas
# Location Trail Miles Type Links
1 Lake Talquin State Forest – Lines Track West Loop 3.8 Hike favicons (16×16)
2 Ellinor Klapp-Phipps Park West Loop 2.9 Hike
3 J.R. Alford Greenway Bluebird Loop 3.9 Hike
4 San Luis Mission Park San Luis Park Loop 1.98 Hike favicons (16×16)
5 Apalachicola National Forest GF&A Trail 5 Hike

6 Maclay Gardens State Park Shared Trail Loop 5.5 Bike https://www.floridastateparks.org/maclaygardens
7 Lake Talquin State Forest – Lines Track Talquin Loop (Blue) 6 Bike
8 Okeeheepkee Prairie County Park Pond Loop 0.5 Hike  
9 Apalachicola National Forest Munson Hills 8.4 Bike
10 Governors Park Fern Trail 3.4 Hike  
11 Three Rivers State Park Eagle Trail 3

Bike

12 St Marks Trail North Trail 16 Bike
13 Ochlockonee River WMA Old Cemetary Rd 3.9 Hike  
14 Lafayette Heritage Trail Park Lafayette Heritage Trail 6.9 Hike  
15 Wakulla Springs State Park Wakulla Springs Park Trail 10.1 Hike
16

Orchard Pond

Orchard Pond Trail 6.9 Bike  
17

Silver Lake Recreation Area

Silver Lake Habitat Trail 1.4 Hike
18 Timberlane Ravine Nature Preserve Timberlane Ravine Nature Trail 1.5 Hike
19 San Felasco Hammock Preserve State Park Moonshine Creek Trai 1.6 Hike
20 Lakeland Highlands Scrub  Lakeland Highlands Scrub Trail 3.1 Hike  
21 Catfish Creek Preserve State Park Campsite 2 White Trail 5.5 Hike
22 Black Creek Preserve Red Trail 4.9 Hike  
23 Tom Brown Park Magnolia MTB Trail 3 Bike  
24 Central Park Central Park Lake Loop  1.9 Hike  
25 Apalachicola National Forest Camel Lake Loop 8.2 Hike
26 J. R. Alford Greenway Yellow Loop 5.3 Bike  
27 Miccosukee Canopy Road Greenway Miccosukee Greenways Trail 15.5 Bike  
28 Bald Point State Park Loop 3.1 Hike
29 A.J. Henry Park A.J. Henry Park Trails 1.9 Hike
30 Alfred B. Maclay Gardens State Park Bike Loops 5.7 Bike
31 Wakulla State Forest Nemours Trail 1.6 Hike
32 Ochlocknee River WMA Cut Through Lewis Loop 2.5 Hike  
33 Kolomoki Mounds State Park Spruce Pine Trail 3.1 Hike
34 Wilson Hospice House Wilson Hospice House Trail 1.3 Hike  
35 Marjorie Turnbull Park Trail 1.6 Hike  
36 Tallahassee Morning Hike from Budget 5.4 Hike  
37 Gil Waters Preserve at Lake Munson Trail 1 Hike
38 Bald Point State Park Sandy Trails 4.2 Bike
39 Elinor Klapp-Phipps Park Redbug Trails 4.6 Bike
40 Tate’s Hell State Forest High Bluff Coastal Loop Trail 9 Bike
41 Ochlocknee State Park Pine Bluff Trail 1.2 Hike
42 St. Joseph Island Loggerhead Trail and Maritime Hammock Nature Trail 21.5 Both
43 Tom Brown Park West Cadillac Trail 3.1 Bike
44 J.R. Alford Greenway Long Leaf Trail 4 Hike  
45 Alfred B. Maclay Gardens State Park Ravine Trail 1.9 Bike
46 Cascades Park Cascades Park Loop 2.5 Hike
47 Apalachicola National Forest Oak Park Bridge Trail 4.8 Hike
48 St. George Island State Park Gap Point Trai 5.5 Hike
49 St. George Island State Park Sugar Hill Beach Old Road 7.3 Both
50

St. Marks Trail

Wakulla Springs to St. Marks 16 Bike  
51 Myakka River State Park Fox’s Low to Mossy Hammock 3 Hike
52 Myakka River State Park Mossy Hammock to Fox’s Low 9.5 Hike
53 Plant City Dean’s Ride 8.5 Bike  
54 River Rise Preserve State Park River Rise Preserve Trail 2.9 Hike
55 St. Marks Trail North Trail 9.8 Bike  
56 Tom Brown Park Subaru to Tom Brown 3.5 Hike  
57 Apalachicola National Forest Wright Lake White Trail 5.5 Hike
58 St. Mark WMA Plum Orchard to St Marks Via Port Leon 8.2 Hike  
59 Capital Circle SE  Captial Circle SE Shared Use Path 13 Bike
60 Econfina River State Park Blue and Orange Trail 12.5 Bike
61 Anita Davis Preserve at Lake Henrietta Park Lake Henrietta Trail 1.8 Hike

62 Goose Pond Trail Goose Pond Trail 2.7 Hike  
63 Wakulla State Forest Double Springs Trail with Petrik Spur 4.7 Bike
64 Fred George Greenway and Park Fred George Loop 1.5 Hike  
65 Lake Talquin State Forest Long Leaf Loop 3.9 Hike

favicons (16×16)

66

Guyte P. McCord Park

Sculpture Trail 1.2 Hike
67 Ochlockonee Bay Trail Ochlockonee Bay Trail 31.2 Bike  
68 Optimist Park Indian Head Trail 2 Hike
69 Chase Street Park Monticello “Ike Anderson” Bike Trail 4.5 Bike  
70 Apalachicola National Forest – Bradley Bay Wilderness Monkey Creek Trail Head on Florida Scenic Trail 4.9 Hike
71 FSU Bike Path Ocala Rd to Stadium Drive 2.3 Bike  
72 Seminole State Park Gopher Tortoise Nature Trail 1.8 Hike
73 J.R. Alford Greenway Wiregrass and Beggarwood Loop 3.3 Bike  
74 Lake Talquin State Park Lake Talquin State Park Trail 1.6 Hike
75 Capital to Coast Trail St. Marks to 319 24.3 Bike  
76 Constitution Park Dolls Head Trail 2.4 Hike  
77 East Roswell Park Park Loop Trail 2.1 Bike  
78 Chattahoochee-Oconee National Forest Andrews Cove Trail 3.8 Hike
79 Unicoi State Park Bike Trail 3.5 Bike
80 Unicoi State Park Anna Ruby Falls 1 Hike
81 Brinkley Glen Park Brinkley Glen Trail 1 Hike
82 Letchworth-Love Mounds Archaelogical State Park Letchworth Mounds Loop 2.7 Hike
83 St. Marks WMA Florida Scenic Trail 5.5 Hike  
84 Econfina State Park River Loop (Red Trail) 3.3 Hike
85 Torreya State Park Torreya Trail 6.6 Hike
86 Lafayette Heritage Trail Park East Cadillac Loop 2.6 Bike
87 Governors Park Fern Trail, Kohl’s Trail and Blairstone Multi-Use Trail 4.4 Hike  
88 Apalachee Regional Park Cross Country Loop 3.3 Hike
89 St. Andrews State Park Road and Pine Flatwoods Trail 5.5 Both
90 Torreya State Park Torreya Challenge 9.3 Hike
      478    

 

Google Calendar Privacy Vulnerability

Its interesting how events can lead one find privacy and security vulnerabilities. I’m reminded of the old Connections show, where James Burke would connect seemingly unrelated events in human history and show how one led to another. During my Winter 2021 Strategic Privacy by Design course, the United States did a time shift known as Daylight Saving Time, an anachronism from the days of agriculture where the government thought changing the time twice a year to adjust to changing sunlight would help farmers use time more effectively. As a result of this shift, some students in Europe showed up at the end of a lecture because I had adjust my clock, but they, obviously being in Europe, had not.

As a result of this timing error, I thought it might be good to create calendar items in Moodle (the LMS I use) for the Spring 2021 Strategic Privacy by Design course. The plan was to export the iCal file and send it to students so they would each be able to insert the important course events in their own calendar. I did just that into my calendar as well, which, unfortunately is in Google.

My eagle eyed assistant instructor, Maria, noticed when she was checking my schedule to send me an invite to a meeting, that should could see these items, even though I had set up to only share Free/Busy calendar (see below).

After digging around, I finally figure out what was going on. Visibility on each calendar item has options of: private, public or default visibility (meaning to default to the overall calendar’s visibility).

However, these calendar items had a class in the iCal file of public, which overrode my calendar’s default of Free/Busy only.

Those events were imported. I wanted to check, so I had my security intern invite me to three event, one she set to private, one she set to public and one she set to default visibility. As expected, despite my calendar set to Free/Busy only, the “public” event showed as public.

Your reaction may be, well this event is public, but two problems persist. 1) It still shows MY interest or possible attendance in this public event, not just whether I’m busy or free; and 2) when the sender has their calendar default to public and doesn’t realize that but sends you an invite to talk. I would suggest that my calendar settings should override the imported event’s settings, just to be on the safe side.

By the way, if anyone has a suggestion for a privacy friendly online calendar (so I can share my free/busy schedule), I’d appreciate hearing from you. I haven’t found a good alternative yet.

How to stalk someone via a trail mapping app.

For those that don’t know, I’m an avid hiker and biker. In fact, I’m currently undertaking a challenge that I created for myself to do 90 different trails in 100 days. Currently, I’m 2/3rds through that challenge with ~30 days to go. One of the keys tools I use for finding and following trails is a mobile App called AllTrails.

I’ve used it for years but now I’m using it daily. While I’ve known that trail apps have potential privacy problems  (I even included building a privacy friendly trail app as an example in my book, see illustration), my recent use has pinpointed how problematic.

 

Screenshot of AllTrails

In the App on a phone, when you pull up to explore the area looking for trails you’re presented the pinpoints of a bunch of curated trails, as shown at left. You can click on a trail and get a description, trail map, reviews, popular activities and features. There is a slight problem in that reviews, I think, are public by default, but it appears that when your profile is private or individual recordings are private, your reviews aren’t shown. 

In my search for trails, though, I’ve found lots of unlabeled trails. In other words, trails at parks, greenways and forests that haven’t been curated and cataloged. You can submit new trails for consideration, and I’ve done that with a few. I’ve also recorded via the app some hikes and walks that aren’t official trails, like when I dropped a rental truck off and walked home 5 miles because I needed to get a hike in that day or when my car was getting an oil change and I hiked to a park to kill time. Because of the challenge, I wanted to document these “hikes” to record my mileage. Now even though my recordings are private and my profile is private, uploading these recordings seemed even less problematic because they weren’t linked to an official trail and thus unfindable by the public. At least I assumed so. [Yes, privacy professionals, I know, AllTrails could be monetizing me by selling geolocation information to advertisers. I assume so, at least, with any app I use.

It turns out that my statement about recordings unlinked to trails is not quite accurate. In the App it appears to be true, but on the AllTrails website, you can look at curated trails OR community content. 

This community content contains all sorts of hikes people take, including official but uncurated trails, trips to visit grandmother in Ohio (I saw on where someone recorded their road trip) or walking around their neighborhood. I’ve yellowed out the map above to reduce the chance of someone finding this particular hiker’s location based on the road topography. Clicking on the recording in the list of community content leads to the details (shown below). As you can see this hiker left their house (black point) and walked around their neighborhood and turned off the recording as they approached their house at the end of the cul-de-sac (green point). Mousing over the endpoints yields the latitude and longitude to 5 decimal places, which is accurate to within a meter. I’ve attempted to obscure as much information as possible, like street names, exact lat/long and other houses, but I’m sure  someone with enough resources could identify this from the unique street outline. However, I’m not going to make it easy. 

You may be thinking, well this isn’t bad because I don’t know who lives at some random house (i.e. I don’t know their name, though it might be part of the public records on home ownership).  It other words its an attribute disclosure about this person (their walk details) but not an identity disclosure. I won’t debate the problems of attribute disclosures in this blog but that’s not what’s happening here. Clicking the profile icon will take you to their profile. Note, this person did at least not upload a picture of themselves so the profile icon (under the words Morning Hike on the left) is generic. Unfortunately, they DID include their full name (changed to a gender neutral generic name below). 

On my recent hiking challenge, I generally listen to podcasts, mostly privacy related. One I’ve become very fond of is Michael Bazzell’s “Privacy, Security and OSINT” podcast. It’s fairly frequent (I’m listening to podcasts daily now) and provides both tips on how to protect your privacy and OSINT (Open Source Intelligence) techniques, to which people need to be familiar with in order to protect their privacy. 

Of course, being a privacy by design specialist, my take is people shouldn’t have to go to extremes to protect their privacy. The onus is on organizations to build better products and services. AllTrails, I like your app, really, I do. But it needs so many improvements from a privacy perspective. So many, in fact, I’d be happy to offer you some free consulting. Just contact me rjc at enterprivacy.com.  I don’t mean to single AllTrails out. I’m sure this is a problem with many or most of the trail apps. AllTrails just happens to be the one I use. 

For others who don’t want their organizations to be on the cover of the NY Times , sign up for some privacy by design training or contact me about a consulting engagement. Become a privacy hero with your customers. 

One Way Tables

One of the potential downsides of relational data is the ease at which data can be related in both directions. A simple search of the table below will reveal not only if a known customer has COVID but a list of all COVID positive customers.

Supposed instead, you want to be able to determine if a customer has COVID but not easily obtain a list of all customers who have COVID. How might you do that? This can be accomplished using one-way functions (hashes).. By hashing the customer’s name (shown as H(name) function) and replacing that in the customer field, we no longer can get a list of customer’s with COVID. A simple SQL query will get the customer’s COVID status from their name: SELECT Covid from TABLE where Customer = hash(customer_name). The inverse, however, won’t get me the list of customers with COVID but a list of hashes: select customer from TABLE where COVID =”Positive”.

Now hashes are one way functions, meaning it’s very difficult to determine x, given H(x). However, because of the very few values of customer’s name, it’s easy to compute what’s called a rainbow table, that is a table of all possible hash values. We can then lookup the hash in the rainbow table and obtain the customer’s name for those customers that have COVID. The table below assumes we know all the names of customers, an attacker may not, but names are fairly common and even if we created our rainbow table with six thousand different common first names, that’s fairly trivial to compute.

We address this with a concept called salting, which is adding a random value to the Name before hashing it, i.e. Customer = H(Name+Salt). One problem though we can’t use the same salt for every customer or an attacker could precompute a rainbow table just adding the salt to each name before calculating the hash. We also need the salt BEFORE we do the hash. Now customer’s can’t be expected to remember the salt before looking it up, but we can give them an account number, which we can relate to the salt. A customer, wanting to look up their COVID status, enters their account number and name. The system retrieves the salt using the account number and hashes the name to determine the customer and look up their COVID status. [Note, salts should be incremented with each access to prevent replay attacks but that’s beyond the scope of this blog].

Light arrows show the link between rows, only discoverable with knowledge of the customer’s name.

Now an attacker wanting to identify all known COVID cases would need to hash all the possible customer names against all the possible salts. Padding the salt table with hundreds of thousands of random account numbers could increase the number of computations necessary for the attacker. In fact, you could prefill the account table with a million rows and a million salts and randomly assign account numbers to customers. Even if two customers got the same account number, they aren’t going to get the same Customer value unless they have the same name, H(name+salt). This also benefits us because if we have two people with the same name, they could be given different account numbers and distinct COVID statuses.

In order to create a rainbow table now an attacker must hash six thousand names with a million account numbers, or 109 rows. Not impossible but starting to slow them down.

I’m going to make it even a little bit harder. Right now, we can still use the COVID table to identify how many people are COVID positive or negative. This is especially problematic if each and every customer has the same status. We can do a little encryption and steganography to hide the information. First, for each record we can generate a random 64 byte value (say 787683b51cf3b49886fce82dc34a51a2 in Hexadecimal). If we need to encode a negative result, we ensure that value has the least significant bit of 0. If we need to encode a positive result, we ensure that value has the least significant bit of 1 (i.e. 787683b51cf3b49886fce82dc34a51a3). Note the change in the last digit from 2 to 3, changing the least significant bit and the COVID status. That value is then encrypted using a symmetric cypher (such as AES) without padding or authentication to verify the accuracy of the data. We can use part of the SALT as the encryption key (bolded in the table below)

Now, an attacker can’t search the COVID table to identify how many customers have COVID. Additionally, because we used an encryption algorithm without any validation, any of the values in the COVID column will decrypt with any of the encryption keys in the account table, just with erroneous least significant bits, thus not disclosing anyone’s COVID status at all. If we used a decryption algorithm with padding or authentication, it would provide a quicker backdoor for connecting records in the account table with records in the COVID table.

One more step to slow a potential attacker down is to iterate the hashing, in other words compute H( H( H( H( …. H(name+salt))))), say 100,000 times. While slowing down lookups slightly, it significantly increases the computation of a rainbow table for an attacker, who now must compute 100,000 x 109 hashes. Increasing the number of values in the account table, increasing the potential values for name (such as using given name and surname), and increasing the number of iterations will all serve to slow an attacker down.

The concept described above is sometimes called a translucent database, such that someone who has full access to the data (a database engineer) still can’t interpret it, but with a little extra knowledge (account number and name), a customer can still retrieve their COVID status.

Cookie pollution

Just moments ago I visited lightpollutionmap.info to look for someone to go camping this weekend where there was as little light pollution as possible given a reasonable drive from where I’m at. I was immediately presented with a pretty comprehensive cookie banner. The FIRST thing I noticed was that I couldn’t unselect unnecessary cookies, which included over 75 “statistics” cookies.

Most of those “statistics” cookies, of course, are really third party marketing trackers. The only option presented were “Allow selection” and “Allow all cookies” which were functionally identical because you couldn’t unselect any of the types of cookies. I noticed the button for only selecting necessary cookies was still there but invisible. I clicked it, only be to presented a blank screen. See the video below showing the cookie selection options disappearing. I also noticed the ad settings options to accept or reject vendors was disabled was disabled.

VIDEO of options being hidden

Artificial Motivations

Recently I had the pleasure of working with two start-ups in the AI space to help them consider privacy in their designs. Mr Young, a Canadian start-up, wants to use an intelligent agent to allow individuals to find resources available to them to improve their mental well-being. Eventus AI, a US based company, hopes to use AI to optimize the sales funnel from leads collected at events. Both recognized the potential privacy implications of their services and wanted to not only ensure compliance with legal obligations, but showcase privacy as an important aspect of their brand.

At the onset of my engagements, I had to think about how the intelligent agents driving them could threaten individuals’ privacy. In my previous work, threat actors were persons, organizations or governments, each with distinctive motives. People can be curious, seek revenge, trying to make money, or exert control.  Organizations are generally driven by making money or creating competitive advantage. Governments invade privacy for law enforcement or espionage purposes. Less angelic governments may invade privacy out of desires for control or repression of their citizens.

Figure 1 From the book Strategic Privacy by Design chapter on Actors

Typically, when I think of software, it isn’t a “threat actor” in my privacy model. They don’t have independent motives. They are tools made by developers but they don’t have motives on their own. The question arises though; does AI represent a different beast? Does AI have “motives” independent of its creator? Clearly, we haven’t reached a stage where HAL 9000 refuses Dave’s command or Skynet determines humanity as a threat to its existence, but could something slightly less sentient manifest motive?

Still, I would argue that AI is not similar to other software. It can, in the sense, present a privacy threat beyond the intent of its creator.  While not completely autonomous, AI does exhibit an ends justify the means approach to achieving its objective.  The difference between AI and, say, a human employee, is the human can put their business objective in context of other social norms, whereas AI lacks this contextual understanding. I liken it to the dystopian analogy of robots being programmed to prevent humans from harming one another and determining the best way is to exterminate all humans. Problem solved! No more humans harming other humans. Like the genie granting a wish, they do exactly what they are told, sometimes with unintended and far-reaching consequences.

The motivation that I would ascribe to AI then is “programmatic goal-seeking.” It is not that AI seeks to invade privacy for independent purposes; rather it seeks whatever it’s been programmed to seek (such as ‘increasing engagements’). Privacy is the beautiful pasture bulldozed on AI’s straight-line path to its destination.

The question now becomes, from the perspective of a developer trying to build an AI into a system, how do you prevent privacy being a casualty of that relentless pursuit? I make no claims that my suggestion below in any way supplants all of the efforts to consider ethics in AI development (failed or successful), but rather this is the approach I take complements others. I think it gets us far along in a pragmatic and systematic way.

Before looking at tactics in the AI context (or anywhere really) there is a fundamental construct the reader must understand: the difference between data and information. Consider a photo of a person. The data is the photo – the bits, bytes, interpretations of how color should be rendered, etc. But a photo is rich with much information. It probably displays the gender of the individual, their hair color, their age, their ethnic background, perhaps their economic or social status. Even without geotagging, if the photograph has a distinctive background it could reveal the person’s location. Their subject’s hairstyle and dress and the quality and makeup of the photo might suggest the decade it was recorded. Giving over that photo to someone not only gives them the bits and the bytes but also gives them all of that rich information.

In general, for privacy by design, I use Jaap-Henk Hoepman’s strategies and tactics to reduce privacy risks. Just as they can be applied to other threat actors, I think they are equally applicable here. Returning to how to use Hoepman’s strategies against AI, consider the following example:

Your company has been tasked with designing an AI based solution to sort through thousands of applicants to find the one best suited for a job. You’re concerned the solution might adversely discriminate against candidates from ethnic minority populations. If you’re questioning whether this is even a “privacy” issue, I’d point you to the concept of Exclusion under the Solove Taxonomy.  We’re (well the AI) is potentially using information, ethnicity, without knowledge and participation of the individuals, an Exclusion violation.

How then can we seek to prevent this potential privacy violation?

Two immediate tactics come to mind. These are by no means the only tactics that could or should be employed but illustrative. The first is stripping which falls under the Minimize strategy and my ARCHITECT supra-strategy. Stripping refers to removing unnecessary attributes. Here, the attribute we need to remove is ethnicity. This isn’t as simple as removing ethnicity as a data point given to the AI. Rather, returning to the distinction between data and information, we need to examine any instance where ethnicity could be inferred from data, such as a name or cultural distinctions in the way candidates my respond to certain questions. This also includes ensuring that training data doesn’t contain hidden biases in its collection.

The second tactic is auditing which falls under the Demonstrate strategy and my SUPERVISE supra-strategy. AI already employs validation data to ensure that the AI is properly goal seeking (i.e. achieving its primary purpose). Review of this validation process should be used to also continue ensuring that the AI isn’t inferring ethnicity somehow (that we failed to strip out) and using that information inappropriately as part of its goal seeking objective. If it turns out it is, then, similar to a human employee, the AI might need retraining with new, further sanitized, data.

While AI represents a new and potentially scary future, with proper design considerations and strategic systematic approaches, we reduce the potential privacy risks they would otherwise create.

Data Fetishism, FIPPs and the Intel Privacy Proposal

fetish – ‘An excessive and irrational devotion or commitment to a particular thing.

Basing their legislative proposal in the Fair Information Practice Principles (FIPPs), Intel looks to the past not the future of privacy.  The FIPPs were developed by the OECD in the 1970’s to help harmonize international regulation on the protection of personal data. Though they have evolved and morphed, those basic principles have served as the basis for privacy frameworks, regulations and legislation world-wide. Intel’s proposal borrows heavily from the FIPPs principles: collection limitation, purpose specification, data quality, security, transparency, participation and accountability. But the FIPPs age is showing. In crafting a new law for the United States, we need to address the privacy issues for the next 50 years, not the last.

When I started working several years ago for NCR Corporation I was a bit miffed at my title of “Data Privacy Manager.” Why must I be relegated to data privacy? There is much more to privacy than data and often controls around data are merely a proxy for combating underlying privacy issues. If the true goal is to protect “privacy” (not data) then shouldn’t I be addressing those privacy issues directly? The EU’s General Data Protection Regulation similarly evidences this tension between goals and mechanism. What the regulators and enactors sought to rein in with the GDPR was abusive practices by organizations that affected people’s fundamental human rights, but they constrained themselves to the language of “data protection” as the means to do this, leading to often contorted results. The recitals to the regulation mention “rights and freedoms” no less than 35 times. Article 1 Paragraph 2 even states “This Regulation protects fundamental rights and freedoms of natural persons and in particular their right to the protection of personal data.” Clearly the goal is not to protect data for its own benefit, the goal is to protect people.

Now many people whose career revolves around data focused privacy issues may question why data protection fails at the task. Privacy concerns existed way before “data” and our information economy. Amassing data just exacerbated power imbalances that are often the root cause of privacy invasions. For those still unpersuaded whether “data protection” is indeed insufficient, I provide four quick examples where a data driven regulatory regime fails to address known privacy issues. They come from either end of Prof. Dan Solove’s taxonomy of privacy.

Surveillance – Though Solove classifies surveillance and interrogation under the category of Information Collection, the concern around surveillance isn’t about the information collected. The issue with surveillance is it invites behavioral changes and causes anxiety in the subject being watched. It’s not the use of the information collected that’s concerning, thought that may give rise to separate privacy issues, but rather the act and method of collection. Just the awareness and non-consent of surveillance (the unwanted perception of observation in Ryan Calo’s model) triggers the violation. No information need be collected. Consider store surveillance by security personnel where no “data” is stored. Inappropriate surveillance, such as targeting ethnic minorities, causes consequences (unease, anxiety, fear, avoiding certain normal actions that might merely invite suspicion) in the surveilled population.

Interrogation – Far from the stereotypical suspect in a darkened room with one light glaring, interrogation is about any contextually inappropriate questioning or probing for personal information. Take my favorite example of a hiring manager interviewing a female candidate and asking if she was pregnant. Inappropriate given the context of a job interview; that’s interrogation. It’s not about the answer (the “data”) or the use of the answer. The candidate needn’t answer to feel “violated” in the mere asking of the question, raising consequences of anxiety, trepidation, embarrassment or more. Again, we find the act and method of questioning is the invasion, irrespective of any data.

Intrusion – When Pokémon Go came out, fears about what information were collected about players abounded, but one privacy issue hardly on anyone’s radar was the use of churches by the game as places for the individual to train their characters. It turned out some of the churches on the list had been converted to people’s residences thus inviting players to intrude upon those resident’s tranquility and peaceful enjoyment of their homes. I defy any privacy professional to say that asking any developer about the personal data there are processing, even under the most liberal definition of personal data, would have uncovered this privacy invasion.

Decisional Interference – Interfering with private decisions strikes at the heart of personal autonomy. The classic examples are laws that affect family decisions, such as China’s one child policy or contraception in the United States. But there are many ways to interfere with individual’s decisions. Take the recent example of Cambridge Analytica. Yes, the researcher who collected the initial information shared people’s information with Cambridge Analytica and that was bad. Yes, Cambridge Analytica developed psychographic profile and that was problematic. But what really got the press, the politicians and others so upset was Cambridge Analytica’s manipulation of individuals. It was there attempt, successful or otherwise, to alter peoples’ perception and manipulate their decision to vote and for whom.

None of the above examples of privacy issues are properly covered by a FIPPs based data protection regime, without enormous contortion. They deal with interactions between persons and organizations or among person, not personal data. Some may claim, that while true, any of these invasions, at scale, must involve data, not one-off security guards. I invite readers to do a little Gedanken experiment. Imagine a web interface with a series of questions, each reliant on the previous answers. Are you a vegetarian? No? What is your favorite meat, chicken, fish or beef? Etc. I may not store your answer (no “data” collection) but ultimately the questioning leads you to one specific page where I offer you a product or service based on your specific selection, perhaps discriminatory pricing based on the selection. Here user interface design essentially captures and profiles users but without that pesky data collecting that would invite scrutiny from the privacy office. I’m not saying some companies might be advanced enough in their thinking, but in my years of practice most privacy assessments begin with “what personal data are you collecting?”

Now, I’ll admit I haven’t spent a time to develop a regulatory proposal but I’d at least suggest looking at Woody Hartzog’s Privacy’s Blueprint for one possible path to follow. Hartzog’s notions of obscurity, trust and autonomy as guiding privacy goals encapsulate more than a data centric world. But Hartzog doesn’t just leave these goals sitting out there with no way to accomplish them. He presents two controls that would help: signaling and increasing transaction costs. Hartzog’s proposal for signaling is that in determining the relationship between individuals and organizations and the potential for unfairness and asymmetries (in information and power), judges should look not to the legalese of the privacy notice, terms and conditions or contracts but the entirety of the interaction and interfaces. This would do more to determine whether a reasonable user fully understood the context of their interactions.

Hartzog’s other control, transaction costs, goes into making it more expensive for organization to commit privacy violations. One prominent example of legislation that increases transaction costs is the US TPCA which bans robocalls. Robocalling technology significantly decreases the cost of calling thousands or millions of households. The TCPA doesn’t ban solicitation, but it significantly increases the costs to solicitors by requiring a paid human caller to make the call. In this way, it reduces the incidents of intrusion. Similarly, the GDPR’s ban on automated decision making increases the transaction costs by requiring human intervention. This significantly reduces the scale and speed at which a company can commit privacy violations and the size of the population affected. Many would counter, and in fact many commenters on any legislative proposal, are concerned about the effect on innovation and small companies. True, that increasing transaction costs, in the way that the TCPA does, will increase costs for small firms. That is, after all, the purpose of increasing transaction costs, but the counter-argument is do you want a two-person firm in a garage somewhere adversely affecting the privacy of millions of individuals? Would you want a small firm without any engineers thinking about safety building a bridge over which thousands of commuters traveled daily? One could argue the same for Facebook, they’ve made it so efficient to connect billions of individuals they simply don’t have the resources to deal with the scale of the problems they’ve created.

The one area where I agree with the Intel proposal is about FTC enforcement. As our de-facto privacy enforcer it already has institutional knowledge to build on, but their enforcement needs real teeth not ineffectual consent decrees. When companies analyze compliance risk if the impact of non-compliance is cost comparable to the cost of compliance, the they are incentivized to reduce the likelihood of getting caught, not actually get in compliance with the regulation. The fine (impact) multiplied by the likelihood of getting fined must exceed the cost of compliance to drive compliance. This is what, at least in theory, the GDPR 4% seeks to accomplish. Criminal sanctions on individual actors, if enforced, may have similar results.

There are other problems with the FIPPs. They mandate controls without grounding in the ultimate effectiveness of those controls. I can easily technically comply with the FIPPs without manifesting improving privacy. Mandating transparency (openness in the Intel proposal) without judicial ability to consider the entirety of the user experience and expectation only yields lengthy privacy notices. Even shortened notices provide less than information about what’s going on than user’s reliance on the interactions with the company.

In high school, I participated in a mock constitution exercise where we were supposed to develop a new constitution for a new society. Unfortunately, we failed and lost the competition. Our new constitution was merely the US Constitution with a few extra amendments. As others have said we don’t need GDPR-light, we need something unique to the US. I don’t claim Hartzog’s model is the total solution, but rather than looking at the FIPPs, Intel and others proposing legislation should be looking forward for solutions for the future, not the past.